Polynomial Functors and Trees

نویسنده

  • JOACHIM KOCK
چکیده

We explore the relationship between polynomial functors and trees. In the first part we characterise trees as certain polynomial functors and obtain a completely formal but at the same time conceptual and explicit construction of two categories of rooted trees, whose main properties we describe in terms of some factorisation systems. The second category is the category Ω of Moerdijk and Weiss. Although the constructions are motivated and explained in terms of polynomial functors, they all amount to elementary manipulations with finite sets. Included in Part 1 is also an explicit construction of the free monad on a polynomial endofunctor, given in terms of trees. In the second part we describe polynomial endofunctors and monads as structures built from trees, characterising the images of several nerve functors from polynomial endofunctors and monads into presheaves on categories of trees. Polynomial endofunctors and monads over a base are characterised by a sheaf condition on categories of decorated trees. In the absolute case, one further condition is needed, a projectivity condition, which serves also to characterise polynomial endofunctors and monads among (coloured) collections and operads. 0. Introduction and preliminaries

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polynomial Functors and Polynomial Monads

We study polynomial functors over locally cartesian closed categories. After setting up the basic theory, we show how polynomial functors assemble into a double category, in fact a framed bicategory. We show that the free monad on a polynomial endofunctor is polynomial. The relationship with operads and other related notions is explored. Introduction Background. Notions of polynomial functor ha...

متن کامل

A Linear Category of Polynomial Functors

We construct a symmetric monoidal closed category of polynomial endofunctors (as objects) and simulation cells (as morphisms). This structure is defined using universal properties without reference to representing polynomial diagrams and is reminiscent of Day’s convolution on presheaves. We then make this category into a model for intuitionistic linear logic by defining an additive and exponent...

متن کامل

Categorical Logic and Proof Theory Epsrc Individual Grant Report – Gr/r95975/01

I describe the main results obtained during the EPSRC postdoctoral fellowship that I held at the University of Cambridge. The fellowship focused on the interplay between category theory and mathematical logic. 1. Wellfounded trees W-types in categories. Types of wellfounded trees, or W-types, are one of the most important components of Martin-Löf’s dependent type theories. They allow us to defi...

متن کامل

Wellfounded Trees and Dependent Polynomial Functors

We set out to study the consequences of the assumption of types of wellfounded trees in dependent type theories. We do so by investigating the categorical notion of wellfounded tree introduced in [16]. Our main result shows that wellfounded trees allow us to define initial algebras for a wide class of endofunctors on locally cartesian closed categories.

متن کامل

Discrete Generalised Polynomial Functors

We study generalised polynomial functors between presheaf categories, developing their mathematical theory together with computational applications. The main theoretical contribution is the introduction of discrete generalised polynomial functors, a class that lies in between the classes of cocontinuous and finitary functors, and is closed under composition, sums, finite products, and different...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008